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Proton Dynamics in Hydrogen-Bonded Systems 

Eric Nylund, 1 Katja Lindenberg, 1 and George Tsironis 2 

We discuss a simplified version of an ice lattice which consists of an alternating 
sequence of heavy and light masses. The light masses (protons) are each subject 
to a bistable potential caused by the heavy masses (oxygens). The protons inter- 
act with one another, as do the heavy ions. The interactions between the 
protons and the oxygens modulate the bistable proton potential. This system is 
known to exhibit kink and antikink solutions associated with mobile ionic 
defects accompanied by a lattice distortion. We show that at finite temperatures 
and in the presence of a constant external field on the protons, the defect 
velocity is a nonmonotonic function of the temperature, reflecting an interesting 
interplay of thermal effects (noise) and the constant deterministic external 
forcing in this nonlinear system. We discuss extensions of the model to higher 
dimensions, and present preliminary results for the proton motion in such 
networks. 

KEY WORDS:  Hydrogen-bonded networks; proton dynamics; multidimen- 
sional effects; collective motion. 

1. I N T R O D U C T I O N  

The focal theme of this workshop is the response of nonlinear (mainly 
bistable) systems to simultaneous forcing by noise and by a deterministic 
periodic signal. The nonlinear nature of a bistable system causes an inter- 
play of these two forces that under certain circumstances leads to "stochastic 
resonance," an enhanced response of the system to the deterministic signal 
when the noise parameter values lie in certain specified ranges. 3 

One might broaden this description and view the problem of interest 
in this workshop as the interplay of deterministic and stochastic forcing of 
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nonlinear systems, and the way in which this interplay leads to a variety 
of types of system responses that are not simple superpositions of the 
responses of the system to either form of forcing alone. We have been 
interested in a problem that fits into this broader description. 

Our problem arises in the context of models of proton transport in 
hydrogen-bonded chains and surfaces--for our presentation here the 
context is perhaps incidental. We will mainly deal with the model 
itself as one that leads to interesting interplay effects, and avoid arguments 
as to its applicability to specific physical systems. Nevertheless, we use the 
terminology associated with real systems, primarily ice, since the models 
and the parameter values used in numerical simulations are drawn from 
these associations. 

In Section 2 we introduce a streamlined one-dimensional model of a 
hydrogen-bonded chain and briefly review the possible coherent proton 
dynamics in such a model. In Section 3 we introduce a finite temperature 
and a deterministic constant external force, and we discuss the way i n  
which the protons respond to their presence. In Section 4 we preview some 
of our efforts to extend these studies to two-dimensional systems. 

2. O N E - D I M E N S I O N A L  M O D E L S  

A simplified version of an ice lattice is shown in Fig. la, and an even 
simpler one-dimensional version of the model is shown in Fig. lb. The 
model consists of an alternating sequence of light ("proton") and heavy 
("ion") masses. When the heavy ions are fixed in their equilibrium posi- 
tions as shown, the potential energy minima for the protons are not located 
equidistantly from the neighboring heavy ions. Rather, a proton will tend 

(b) 

Fig. 1. (a) A simplified version of the cubic hexagonal lattice structure of ice. The large 
circles represent oxygen atoms, and the smaller black circles represent the protons. (b) A one- 
dimensional version of the ice lattice. 
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(a) 

(b) 

Fig. 2. (a) The symmetric bistable potential of the simplified one-dimensional ice lattice. 
(b) Translation of each proton from one potential minimum to another represented as a 
coherent motion. 

to lie closer to one of the heavy ions, forming a covalent bond with it, and 
a hydrogen bond with its more distant neighboring ion. In the figure we 
have chosen a particular such configuration in which each proton is 
covalently bonded with the heavy ion on the left. Since in the isolated 
ion proton-ion unit there is an equal probability that the proton will 
bond covalently with either of its neighboring heavy ions, the potential 
energy surface of each proton is symmetric and bistable, as shown in 
Fig. 2a. In this figure we have explicitly chosen the same particular proton 
configuration as in Fig. lb. 

Dynamics that allows a proton to move from one minimum of its 
bistable potential to the other (as indicated schematically in Fig. 2b) may 
arise in this model via, for example, a proton-proton interaction. The 
bistable potential together with this interaction lead very naturally to 
coherent proton motion. This motion in turn can be associated with the 
concepts of topological solitons. ~2'3~ In the simplest versions of the model 
the heavy ions are fixed, and the proton masses are harmonically bound to 
one another. The Hamiltonian that determines the dynamics of the chain 
then is (2'3~ 

H , =  ~ -~uj +-~ mo~2(uj+ , - uy)2 + V(uj) (1) 

where us is the displacement of the j t h  proton from the position midway 
between the ionic positions, m is the mass of the proton, co is the frequency 
that defines the harmonic vibrations of the proton chain, fi = du/dt, and 
V(uj) is the average double-well potential on each proton due to the 
presence of the neighboring, ions. A form that has frequently been 
considered in the literature is 

V(uj) = e(1 - u~ /b2) 2 (2) 

Here e is the barrier height and b is the distance from either minimum of 
the potential to the maximum at uj = 0. The equations of motion associated 
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with Hp are obtained by the usual rules of Hamiltonian mechanics. In the 
continuum limit (i.e., with appropriate limiting procedures whereby the 
discrete site label n is replaced by a continuous position coordinate x) the 
equations of motion are of the so-called "~b4"-form and yield "kink" and 
"antikink" soliton solutions. A kink soliton is formed when two protons 
surrounding a pair of neighboring ions (called "oxygens" below) find 
themselves nearer to the more distant minimum of their corresponding 
potentials with respect to the nearest ion. The instantaneous proton con- 
figuration associated with a kink is shown in Fig. 3a, and the corre- 
sponding proton displacements from the point midway between the two 
neighboring heavy ions is indicated in Fig. 3b. In this configuration there 
is a deficit of positive charge around the oxygen in question. The kink 
solution has thus been associated with an O H -  "ionic defect." An antikink 
soliton involves two protons that simultaneously find themselves in the 
minima nearer to a pair of adjacent oxygens, leading to an excess of 
positive charge around the oxygen (Figs. 4a and 4b). This solution has 
been associated with an H 3 0  + "ionic defect. ''(2~3) Both of these solitons are 
mobile: for instance, a region which initially has protons all located to the 
left of center of the individual bonds will have them all located to the right 
of center once an antikink soliton has moved across the region from left to 
right. This mechanism can thus describe the concerted motion of all the 
protons in the chain from one configuration to the other. 

The model of proton dynamics as formulated so far does not allow a 
proton current or proton relaxation. This restriction arises because the 
protons remain within their original unit cells--the model provides no 
mechanism for a proton to move from one unit cell to another, but only 
to shift positions within one cell (i.e., the intercell potential barrier is 
infinitely high). An important generalization relaxes this constraint 
imposed by the site potential (2) by introducing instead a doubly periodic 

(a) 

(0) 
iiiI_ 1 

Fig. 3. (a) Proton configuration representing a charge deficit about two central ions. 
(b) Graphic representation of proton positions within the potential well realized over several 
lattice sites. This "kink" is associated with an OH- ionic defect. 
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(a) 

(b) 

Fig. 4. (a) Proton configuration representing a charge excess about two central ions. (b) 
Graphic representation of proton positions within the potential well realized over several lat- 
tice sites. This "antikink" is associated with an H 3 0  + ionic defect. 

potential that allows motion between unit cells. (4's) A potential that has 
been used to accomplish this motion is 

V(uj) = ~ _-@ (cos ( ~ ) -  ~) 2 (3) 

where a is the lattice constant and 0 < e < 1. The two-component kink (or 
antikink) solutions obtained with this model represent "ionic defects" 
(see above) and "Bjerrum defects" (bond rotations) typically thought to be 
present in inorganic hydrogen-bonded materials. As before, the ionic 
defects represent motion within one potential well between two heavy ions; 
the Bjerrum defects, on the other hand, represent bond motions that allow 
a proton to actually move along the chain as the covalent bond connecting 
a proton to a heavy ion rotates from one orientation to another (this 
motion is most easily visualized in the context of Fig. la). 

To capture further features essential to the modeling of realistic 
systems, one must also allow the motion of the heavy ions. Typically in the 
streamlined models the heavy ion masses are also assumed to be harmoni- 
cally bound to one another and are subjected to a potential determined by 
the structure in which the chain is embedded. Furthermore, the motion of 
the heavy ions modulates the bistable proton potential. The Hamiltonian 
that determines the dynamics of the chain then consists of several parts(2m): 

H = Hp + H i + Hip (4) 

Hp is the proton Hamiltonian (1). The dynamics of the heavy ions are 
described by the Hamiltonian 

1 Q2 1 2 1 (5) 
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where M is the mass of the heavy ion,/2 is the frequency defining the vibra- 
tions of the chain of heavy ions, and the background potential (here 
assumed to be harmonic) is characterized by the pseudo-optical frequency 
/2 o . Protons and ions are further assumed to interact through 

1 )~Uj(u 2 _ b2 ) (6) 

J 

where )~ is the interaction strength parameter. This interaction is chosen to 
represent the fact that the double-well potential of the protons is dynami- 
cally modulated by the motion of the ions about their average position. 
Thus, for large ion displacements the effective barrier height is substantially 
reduced, thereby permitting ion-assisted proton motion (the barrier can 
even disappear altogether). 

The equations of motion for the protons and ions are obtained using 
the usual rules of Hamiltonian mechanics: 

4e ( u2"~ X Ujuj (7) 
d2uj=~176 l + Uy- l -  Zujl + - ~  2 1 - - ~ / I - -  m 

Z d2Uj= [[22( Uj+1+ Uj_ l - 2Uj) - ~-22 U j -  ~ (u2 - 2 (8) 

Analytic soliton solutions for these coupled nonlinear equations have been 
obtained when g2o = 0 in the continuum limit for a soliton that moves at 
velocity Vo, the speed of sound for the heavy ion lattice. (2) These solutions 
describe proton kinks and antikinks accompanied by a deformation of the 
ion lattice. As a function of the continuous position coordinate x one 
obtains in this case 

and 

u(x, t) = +_b tanh Rz 

U(x, t )= zb2 sech 2 Rz 

(9) 

(10) 

with 

11,  
- ( 1 1 )  

where Co is the speed of sound of the proton lattice and z = x - o o t .  
Equation (9) represents a kink or an antikink, while Eq. (10) is the 
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accompanying deformation of the ion lattice. The solutions for other 
velocities (obtained numerically) do not change substantially (note that if 
the heavy ions are allowed to move, the terminal velocity of the protons is 
smaller, for otherwise the same parameter values, than is the terminal 
velocity of the protons if the heavy ions are not allowed to move). (3) 

It is interesting (in the context of this workshop) to speculate about 
possible "internal resonance" effects that might become apparent for certain 
values of the heavy lattice frequency O: it is conceivable that a stochastic 
resonance effect of sorts arises when this frequency has a particular relation 
to the characteristic times of the proton dynamics. We have not explored 
this possibility. 

3. F INITE T E M P E R A T U R E  A N D  E X T E R N A L  FIELD 

In order to study the defect motion at finite temperatures, the chain is 
placed in a heat reservoir. Although not unique, (7) we have chosen to 
model the coupling between the chain and the reservoir by adding noise 
and damping terms only to the equations of motion for the heavy ions. The 
protons are then automatically subject to thermal effects (albeit filtered by 
the heavy ions) through their coupling to the ions. The equation of motion 
(8) for the heavy ions is then modified by the inclusion of two new terms: 

d2vj dVj dt 2 ='Q2(Uj+I3r-Uj l-2Uj)- " 2UJ-M(bl -b2)- -fJ(t)M (12) 

Here 7 is a damping coefficient and fn(t)  is a S-correlated Gaussian 
stochastic force. The two are related to one another by the fluctuation- 
dissipation relation (see, e.g., ref. 8) 

( f j ( t )  f j , ( t ' )  ) = 2kB TMySj . /S ( t  - t') (13) 

where the brackets indicate an ensemble average over realizations of the 
force and T denotes the temperature. 

The coupled systems of equations (7) and (12) have only been studied 
numerically. They support narrow "defect" solutions of shapes similar to 
those obtained in the absence of fluctuating and dissipative contributions. 
However, whereas those earlier (zero-temperature) defects moved at a finite 
velocity, the movement of the defects in the presence of fluctuations and 
dissipation is random: the defect centroid performs a random walk of 
vanishing average velocity. Net (nonzero-average-velocity) defect motion at 
finite temperatures can only take place if one applies an external deter- 
ministic force to the system. We implement such a force by adding a 
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suitable contribution to the proton equation of motion (7), which now 
becomes 

d2uj 4~ (1 u2) Z Ujuj+ eE (14) 
dt 2 = c ~  l - 2 U j ) + ~ - 2 u J \  - ~ J - m  7 

The electric field E is constant in our studies, and only its effect on the 
protons is considered. In the presence of this field, the (numerical) defect 
solutions have a finite average terminal velocity on which are superimposed 
velocity fluctuations. (9) These fluctuations, also caused by thermal effects, 
are not analyzed here. 

A typical defect and its accompanying lattice distortions are shown in 
Fig. 5. Note that approximately 5 or 6 lattice sites participate in a substan- 
tial way in the defect and its accompanying lattice (heavy ion) distortion. 
Also note the fluctuations in the defect velocity that can be clearly 
discerned in this figure. Figure 6 shows the propagation of a defect at 
two different temperatures- -one  can clearly ascertain the variations in the 
velocity as a function of time at each temperature, as well as the differences 
in the average velocities at different temperatures: the defect at 190 K 
clearly moves more rapidly, on the average, than does the defect at 210 K. 

The behavior shown in Fig. 6 is representative of the fact that the 
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Fig. 5. A kink-type defect and its accompanying lattice distortions. Simulation generated at 
a temperature of 140 K. 
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(a) 

(b) 

0 5 0  100  150  2 0 0  

Fig. 6. Trace of a propagating kink-type defect for 250 time units. Displayed on the x axis 
is the lattice site coordinate, and on the y axis the proton displacement within the potential 
well (uj). Time is advancing away from the viewer. (a) Simulation at 190 K. (b) Simulation 
at 210 K. Both defects are simulated under identical conditions except for the temperature. 

average velocity of  the defect (which would vanish in the absence of the 
field) is determined by an interesting interplay of field and noise effects. 
This interplay is more  clearly shown in Fig. 7, where we exhibit the average 
terminal defect velocity as a function of inverse temperature for two dif- 
ferent field values. These results were obtained by averaging five numerical 
simulations of Eqs. (12) and (14) on 100 lattice sites for each temperature 
of  the system at the respective field values. The equations of mot ion  were 
numerically integrated using a fourth-order  Runge-Kut ta  algorithm. To 
make these equat ions appropriately dimensionless, the following units 
were picked as the s tandards within the simulation(9): time unit equal 
to 1.0214 x 10  - 1 4  sec, mass unit equal to 1 amu, and length unit equal to 
1 x 10 -  lo m. The parameter  choices were guided by the values appropria te  
for ice and agree with those chosen in other numerical investigations in this 
field(3'5'6): e = 2.0 eV, b = 1.0/~, a - -  5.0/~, m = 1.0 ainu, M =  17.0 ainu, 
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Fig. 7. 
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Average defect velocity as a function of inverse temperature for two field values. 

co = 5.87 x10-14 sec-  t, ( 2 o = l . 8 0 x l 0 - t 3 s e c  1 £ J = 5 . 8 7 x 1 0  13sec -1, 
Z = 0.10 eV//~ 3, and dt is typically taken as 0.05 time units. 

As the temperature increases, the defect mobility rises and peaks 
around 190 K. Subsequently it drops, reaches a minimum at approximately 
210 K, and then rises again. This markedly nonmonotonic behavior in this 
temperature regime is a fairly robust effect for different values of the 
electric field. We have indications (from numerical simulations) that upon 
extending the temperature range further, other decreases/increases in the 
defect velocity occur, i.e., that this oscillatory behavior is repeated. We note 
that results of proton current measurements in ice show similar nonmono- 
tonic behavior, (1°'11) although we recognize that the relations between our 
simple one-dimensional model and the transport mechanisms that might be 
associated with these current measurements in the far more complicated ice 
crystals are tenuous. 

The temperature dependence of the defect velocity calculated from our 
model can be directly attributed to the nonlinear nature of the proton 
potential. To understand this behavior, consider first what happens in the 
absence of a field. In this case, the proton defect is symmetric around a 
central proton which lies at the top of the potential barrier (proton 1 in 
Fig. 8a). Adjacent on either side of the defect center there are pairs of 
protons that lie lower on the potential energy surface and that have equal 
potential energies (protons 2 and 3; protons 4 and 5; etc.). Thermal noise 
causes these protons to execute a random walk, with an equal (temperature- 
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2U J%J   j 
(b) 

Fig. 8. (a) A defect m a quasi-one-dimensional hydrogen-bonded chain, and the position of 
the protons in the corresponding symmetric potentials. (b) An external (negative) electric field 
breaks the symmetry of the potential well. (c) Proton hierarchy of potential energies within 
the asymmetric bistable double well. 

dependent) probability of pulling the protons on either side of the barrier 
over the barrier--those closest to the top with greatest probability. As one 
or the other is pulled over the barrier, the center of the defect is buffeted 
back and forth with equal probability in either direction. 

When a field is applied, the symmetry of the potential is broken and 
the protons that formerly had the same potential energy no longer do 
(Fig. 8b). Thus, for example, proton 2, which is next to the center of the 
defect in the direction opposite to the field, is closer to the top of the 
barrier than is proton 3. The "ranking" of the proton distance from the top 
of the barrier alternates from one side of the center of the defect to the 
other (Fig. 8c). At low temperatures, the proton that lies closest to the top 
of the barrier (proton 2) now has a greater probability of crossing the 
barrier than does proton 3, and this imbalance of probabilities continues 
(and in fact increases) with increasing temperatures for some range of tem- 
peratures. Each passage of proton 2 over the barrier is accompanied by a 
push on proton 1 in the direction of the field (and hence an increase in the 
defect velocity); the passage of proton 3 over the barrier is accompanied by 
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a pull of proton 1 in the opposite direction (thus tending to decrease the 
defect velocity). Thus, the net effect is an increase in the average defect 
velocity. 

As the temperature is increased further, there comes a point where 
proton 3 easily crosses the barrier, thus counteracting the effects of 
proton 2 and slowing the defect down. Within some temperature range the 
crossing of proton 3 becomes increasingly easier relative to 2 and the 
velocity decreases. When the temperature is increased further, proton 4 
enters the picture and thus leads to an increase in the defect velocity, until 
proton 5 enters the picture, when the defect slows down again. Actually, 
the temperatures shown in the simulation results are too low for protons 
4 and 5 to cross the barrier. However, the thermal motions of these protons 
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Fig. 9. Phase space plot (momentum vs. position) of proton immediately downfield of the 
centroid of the defect. (a) Simulation at 185 K; (b) simulation at 215 K. The average velocity 
of the defect is greater at the lower temperature. (c) Position of a downfield proton (dark 
circle) in relation to the centroid of the defect. 
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on "their" side of the barrier have an influence on protons 2 and 3, respec- 
tively. Proton 4 has a greater impact on proton 2 than does proton 5 on 
proton 3 in the temperature ranges studied. Thus, the defect velocity again 
increases with temperature after reaching a minimum. 

A visualization of this effect can be achieved via a phase space plot 
(momentum vs. position) of proton 3 in the traveling defect, as shown in 
Fig. 9. The upper plot is for a simulated temperature of 185 K, and the 
lower for 215 K, for which the average terminal velocities of the defects are 
respectively faster and slower. The trace of the faster defect shows a slightly 
greater phase density in the region of positive momentum. This represents 
the proton traveling toward the minima of the potential well, contributing 
to the overall motion of the defect in the direction of the applied electric 
field. Contrast this with the behavior of the slower defect, which has a more 
uniformly distributed phase density in the positive and negative momentum 
regions. In addition, there are striking examples of the "crossing" behavior 
described earlier (plotted as the straight lines which zigzag toward the local 
maximum of the double-well barrier). 

Thus, the osci l larory behavior of the defect velocity in the presence of 
a cons tant  electric field and thermal fluctuations is clearly a consequence of 
the interplay of the two forces in the nonlinear potential. 

4. T W O - D I M E N S I O N A L  P R O T O N  D Y N A M I C S  

We are ultimately interested in modeling proton transport in two- 
dimensional systems, in the context of particular systems of physical 
interest. One of these is cyclodextrin, in which complex hydrogen-bonded 
networks may form on the outer and inner surfaces of the cylindrical struc- 
tures formed upon crystallization. (12) Experimental evidence indicates that 
the proton dynamics on these networks may be coherent, reminiscent of 
the soliton like dynamics just described. Cyclodextrin (CD) has dramatic 
conductivity properties that can perhaps be understood in terms of such a 
model. For instance, the electrical conductivity of a CD stack varies by 
three orders of magnitude when the hydration is changed from five water 
adduct species per CD ring to six water adduct species per ring. ~ Such 
dramatic changes may result if a "threshold" degree of hydration is 
necessary for the network to be sufficiently connected to support coherent 
motion. 

We are also interested in understanding the dynamical molecular 
mechanisms responsible for active proton transport across biological 
membranes. In this context, we again believe that an extension of the one- 
dimensional models described earlier may provide useful insights. Several 
theoretical models as well as experimental results indicate that biological 

822/70/1-2-12 
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proton transport systems may consist of low-dimensional chains of 
alternating hydrogen and covalent bonds. (14 18/ 

To study actual proton transport mechanisms in one-dimensional 
geometries it is necessary to allow a proton to leave its local bistable 
potential, which in turn requires the consideration of, for example, a 
doubly periodic potential, as previously mentioned. Furthermore, to 
account for realistic details in the physical systems of interest to us, it is 
necessary to consider more complex, higher-dimensional models. Several 
nontrivial issues surround the construction of such models. 

First, it is noted that the harmonic forces that are introduced to allow 
the protons to interact with one another have the unphysical feature of 
growing in magnitude rather than decreasing with proton separation. 
Instead, we use an exponentially decreasing interprotonic force to simulate 
a more realistic screened Coulomb potential. Such a potential recognizes 
the presence of the heavy ions in the proton-proton interaction. 

Second, the actual form of the two-dimensional potential must be 
chosen with care. It is tempting to generalize the double periodic model 
to a higher-dimensional surface (e.g., by converting scalar to vector dis- 
placements and single to multiple indices; see Fig. 10). However, it turns 
out that with any such generalization it is impossible to allow the protons 

(b) 

Fig. 10. (a) Doubly periodic potential model as described in Eq. (3). (b) The two- 
dimensional analog of the double-barrier model generated by converting single to multiple 
indices and scalar to vectorial displacements. 
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to move freely while preserving the proper electrical balance at all t imes--  
local unphysical net forces arise as an artifact of any such construction. 

In order to satisfy the zero-net-force constraints, we have instead opted 
for a two-dimensional network in which each heavy ion is surrounded by 
a spherically symmetric potential. (19) The average potential exerted on 
proton j located at position rj by heavy ion k located at R k may be written 
as 

V( r j - -Rk)=~exp[ - -~ ( r j - -Rk)2 ] - - / 3exp [ - -~o ( r j - -Rk)  2] (15) 

(see Fig. 11). This potential generalizes (3) and shares with it the double- 
barrier feature, one barrier at the origin and the other at a distance 
determined by the parameter values in (15). In dynamical simulations of a 
multipotential network, each proton experiences only the potential due to 
the nearest heavy ion-- i f  a summation over all heavy ions acting on each 
proton is performed, unphysical features such as the loss of the local poten- 
tial barrier along the molecular bond coordinate can occur. The rapid 
(exponential) decay of the potential justifies our procedure. Furthermore, 
we note that this model allows the protons to equilibrate spatially to an 
electrically neutral configuration within the network. It should be noted, 
however, that in the strictest sense the rotational barrier is no longer 
present in this extended potential. An intermediate barrier about the origin 
is present, but protons are highly unlikely to traverse this, as other, less 
energetic routes are available. Within our model, to "rotate" about the 
ion-ion bond axis the proton motion typically traverses the potential 
minima. While it still must pay the energetic cost of overcoming the net 
repulsive electrostatic forces of the other protons, this is generally much 
less than the value traditionally assessed to a bond-breaking rotation 

(a) (b) 

Fig. 11. (a) Exponentially decaying pair-type potential plotted from +2 to -2  length units 
on either axis. e = 3.15, /? = 4.0, ~ = 1.8, co = 3.0. (b) Reversed potential, displayed for detail. 
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within the crystal lattice. Simulation of this process for multiple sites 
demonstrates a network of paired protons "flipping" back and forth from 
one set of equilibrium positions to another, in turn influencing neighboring 
pairs to mirror this process. Experimentally, recent neutron diffraction 
studies of hydrogen-bonded networks show similar dynamic behavior. (121 

The Hamiltonian for the protons in a network of fixed potentials of 
the form (15), with no consideration of the dynamics of the heavy ions, is 
given by 

m , 2  ~-~r _ 
H : ~ .  ~-rj + -- V(rj Rk) (161 

l j , k  

As before, rj and R k indicate the positions of the protons and heavy ions, 
respectively. The prime on the second sum stresses the restriction men- 
tioned above whereby each proton is only associated with its nearest ion. 
Note that the model allows us to study a variety of hydrogen-bonded 
materials by simply altering the underlying structure that defines the 
average locations of the heavy ions. The next step in the process is to allow 
the heavy ions to move as well, a step that we have not yet implemented. 
Note that the coupling between the motions of the protons and heavy ions 
is already incorporated in the R dependence in Eq. (16). 

To simulate the presence of thermal effects, one might proceed as in the 
one-dimensional case, that is, by adding fluctuating and dissipative forces 
to the equations of motion of the heavy ions. Since we are at this point 
not considering the dynamical evolution of the heavy ions and hence do 
not yet wish to deal with explicit ion equations of motion, we must find an 
alternative procedure. A procedure that retains the notion that the heavy 
ions (rather than the protons) are the ones directly connected to the heat 
bath and that can be implemented independently of any other assumed 
dynamics for the heavy ions is the direct addition of fluctuations to the 
positions R. We have implemented this procedure (without yet implement- 
ing any other heavy ion dynamics) by assuming that the maximum of the 
potential centered at Ro, k at zero temperature fluctuates about this value 
at finite temperature, so that the maximum position acquires a time 
dependence Rk(t ). The temperature is fixed by requiring that the fluctua- 
tions about the average satisfy the relation 

2kB Tt (171 ((Rk(t) -- R~ = My 

for each k. As before, ~ is the damping coefficient. Damping is added 
phenomenologically to the proton equation of motion to balance these 
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fluctuations. The equations of motion for the protons may then be written 
a s  

d2ri drj dV(r j -Rk(t) )  
dt 2 - - ~  dt drj ~'i t c exp [ -~  j ( r j - r i ) l ]  (18) 

Here ~c and ~ are the parameters that characterize the electrostatic 
interproton interaction. The kinetic energy is monitored throughout the 
simulation and is found to have the expected value of kB T/2 per degree of 
freedom, in accordance with the equipartition theorem. 

Recent simulations of this model system are proving encouraging. 
In Fig. 12 the trace of the proton motions is shown for such a quasi- 
two-dimensional hydrogen-bonded network. The accompanying diagram 
illustrates the traveling defect as it works its way through the system. Note 

15 
' ' ~ - ~ T  . . . .  ~ - '  ' '  F ' '  I ' = ~ -  

~a~ - , 5  ~ . . . .  I ~ _ _ ,  I L , ~ ,  
2 I 0 ] 2 3 

�9 - -  Mobile Proton 

0 ( ' ~0  - -  Statianary Proton 

(b) - -  Potential 

Fig. 12. The trace of proton motions in a pair potential network at a temperature of 330 K, 
and influenced by a field of 100 kV/cm. Potential parameters are c~ = 12.0,/~ = 8.5, ~ = 4,5, and 
o)=0.05. (b) A simplified diagram illustrating the mot ion of the proton traversing the 

network. 
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one feature that is immediately obvious: the transferred proton is not 
necessarily restrained to be the adjacent down-field proton, as it is in the 
one-dimensional models. In general (although it is highly unlikely) a single 
proton could wend its way through the entire chain. 

Refinements of this model are in progress and will undoubtedly 
advance our understanding of the dynamics of hydrogen-bonded collective 
motions. In particular, we are in the process of implementing the summa- 
tion of pair potentials to yield a potential with notational barriers that are 
not solely a function of the proton-proton electrostatic interactions, as well 
as an accurate mapping scheme to realistically project three-dimensional 
proton networks onto a two-dimensional surface. 

5. CONCLUSION 

We have discussed a coupled one-dimensional system of particles in 
bistable potentials that give rise to solitonlike "defect" solutions. In the 
presence of an external dc field and thermal fluctuations/dissipation, the 
velocity of the "defect" solutions is a nonmonotonic function of the tem- 
perature. This behavior results from the nonlinear nature of the potential 
and the consequent interplay of the dc field and the thermal effects. 

It is our hope that generalizations of these models to two dimenslons 
may contribute to the understanding of proton transport in a variety of 
systems, perhaps including proton transport across biological membranes. 
Several questions germane to this particular field that may be answered by 
our studies include the role of dimensionality in the propagation of non- 
linear defects, the ability of charged defects to traverse channels against 
large fields, and the ability to thermally generate spontaneous defects in 
inorganic and biological materials. 
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